By Topic

Error statistics of real-time power measurements in cellular channels with multipath and shadowing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Goldsmith, A.J. ; California Univ. of Technol., Pasadena, CA, USA ; Greenstein, L.J. ; Foschini, G.J.

Real-time power measurements performed by cellular receivers are essential for power control, handoff, and dynamic channel allocation. For best results, the measurement filter bandwidth must be sufficiently narrow to average out multipath fluctuations, yet sufficiently wide to follow shadow fading fluctuations. Our study considers two measurement methods (filtering the squared envelope, and filtering the logarithm of the squared envelope), and two filter types (integrate-and-dump and RC). We show, using standard models for the multipath and shadow fadings, that the dB measurement error tends to be Gauss-distributed, and can readily be made unbiased (zero mean) by proper amplitude calibration. The performance metric then becomes the standard deviation (Δ) of the dB error, which can be minimized by proper choice of the filter bandwidth. We find that Δ can be kept to values of 3 dB or lower over a wide range of mobile velocities and shadow fading characteristics. Also, we discuss the potential gains in measurement accuracy associated with diversity reception and broad-band channels

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:43 ,  Issue: 3 )