By Topic

A neural network approach for the solution of electric and magnetic inverse problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Coccorese, E. ; Istituto di Ingegneria Eletronica, Univ. of Reggio Calabria, Italy ; Martone, R. ; Morabito, F.Carlo

Multilayer neural networks, trained via the back-propagation rule, are proved to provide an efficient means for solving electric and/or magnetic inverse problems. The underlying model of the system is learned by the network by means of a dataset defining the relationship between input and output parameters. The merits of the method are illustrated in the light of three example cases. The first two samples deal with inverse electrostatic problems which are relevant for nondestructive testing applications. In a first problem, a boss on an earthed plane is identified on the basis of the map of potential produced by a point charge. In the second problem, the geometric parameters of an ellipsoid carrying an electric charge are identified. In both cases, database of simulated measurements has been generated thanks to the available analytical solutions. As a sample magnetic inverse problem, the identification of a circular plasma in a tokamak device from external flux measurements is carried out. The results achieved show that the method here proposed is promising for technically meaningful applications

Published in:

Magnetics, IEEE Transactions on  (Volume:30 ,  Issue: 5 )