By Topic

Field programmable gate arrays and floating point arithmetic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fagin, B. ; Dept. of Comput. Sci., US Air Force Acad., Colorado Springs, CO, USA ; Renard, C.

We present empirical results describing the implementation of an IEEE Standard 754 compliant floating-point adder/multiplier using field programmable gate arrays. The use of FPGA's permits fast and accurate quantitative evaluation of a variety of circuit design tradeoffs for addition and multiplication. PPGA's also permit accurate assessments of the area and time costs associated with various features of the IEEE floating-point standard, including rounding and gradual underflow. These costs are analyzed, along with the effects of architectural correlation, a phenomenon that occurs when the cost of combining architectural features exceeds the sum of separate implementation. We conclude with an assessment of the strengths and weaknesses of using FPGA's for floating-point arithmetic.<>

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:2 ,  Issue: 3 )