By Topic

Beyond execution time: expanding the use of performance models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. D. Peterson ; Washington Univ., Seattle, WA, USA ; R. D. Chamberlain

Improved performance is a major motivation for using parallel computation. However, performance models are frequently used only to predict an algorithm's execution time, not to accurately evaluate how the choices of architecture, operating system, interprocessor communication protocol, and programming language also dramatically affect parallel performance. We have developed an analytic model for synchronous iterative algorithms running on distributed-memory MIMD machines, and refined it for disrete-event simulation. The model describes the execution time of a single run in terms of application parameters such as the number of iterations and the required computation in each, and architectural parameters such as the number of processors, processor speed, and communication time. Our experience has shown us that an analytic model can not only accurately predict an algorithm's performance but can also match the algorithm to an appropriate architecture, identify ways to improve the algorithm's performance, quantify the performance effects of algorithmic or architectural changes, and provide a better understanding of how the algorithm works.<>

Published in:

IEEE Parallel & Distributed Technology: Systems & Applications  (Volume:2 ,  Issue: 2 )