By Topic

Relating statistical MOSFET model parameter variabilities to IC manufacturing process fluctuations enabling realistic worst case design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. A. Power ; SILVACO Data Syst., Santa Clara, CA, USA ; B. Donnellan ; A. Mathewson ; W. A. Lane

The implementation of a viable statistical circuit design methodology requiring detailed knowledge of the variabilities of, and correlations among, the circuit simulator model parameters utilized by designers, and the determination of the important relationships between these CAD model parameter variabilities and the process variabilities causing them is presented. This work addresses the above requirements by detailing a new framework which was adopted for a 2-μm CMOS technology to enable realistic statistical circuit performance prediction prior to manufacture. Issues relating to MOSFET modeling, the derivation of fast “direct” parameter extraction methodologies suitable for rapid parameter generation, the employment of multivariate statistical techniques to analyze statistical parametric data, and the linking of the CAD model parameter variations to variabilities in process quantities are discussed. In this approach the correlated set of model parameters is reduced to a smaller and more manageable set of uncorrelated process-related factors. The ensuing construction and validation of realistic statistical circuit performance procedures is also discussed. Comparisons between measured and simulated variabilities of device characteristics is utilized to demonstrate the accuracy of the techniques described. The advantages of the proposed approach over more traditional “worst case” design methodologies are demonstrated

Published in:

IEEE Transactions on Semiconductor Manufacturing  (Volume:7 ,  Issue: 3 )