By Topic

The role of explanatory relationships in strategies for abduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tanner, M.C. ; George Mason Univ., Fairfax, VA, USA ; Josephson, J.R.

We conducted an experiment to test whether explicitly represented knowledge of explanatory relationships can significantly reduce uncertainty and increase correctness in the abductive reasoning process. We compared the performance of four abduction machines, each using a different combination of knowledge types and a different reasoning strategy on an existing knowledge base with three kinds of knowledge: routine-recognition knowledge (precompiled knowledge for pattern-based hypothesis scoring); hypothesis-incompatibility knowledge (two hypotheses cannot both be true); and knowledge of explanatory relationships between hypotheses and data items. We conclude that knowledge-based diagnostic systems can improve their accuracy by explicitly explaining data in addition to the usual pattern-based hypothesis scoring.<>

Published in:

IEEE Expert  (Volume:9 ,  Issue: 3 )