By Topic

Adaptive distance protection of a double-circuit line

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jongepier, A.G. ; Dept. of Electr. Res. & Inf. Technol., KEMA, Netherlands ; van der Sluis, L.

Due to changes in the power system, such as generator and line outages and changes in load and generation, the performance of distance relays can vary. In the case of a distance relay protecting a phase of a double-circuit line, the state of the parallel circuit is of major importance. Simulations show that, depending on the power system state, a distance relay can cover from less than 50% up to far more than 100% of the total line length. This is demonstrated with a double-circuit line under the single-line-to-ground fault (SLG) fault condition, since this is the most common type of fault. In this paper the distance protection of a double-circuit line under the SLG fault condition is formulated. To achieve correct operation, the relay does not only use the measured quantities of the circuit-to-be-protected, but also the zero sequence current of the parallel circuit. Such a relay requires extra measuring equipment, and, moreover, the zero sequence current of the parallel circuit cannot always be measured. Therefore, another approach is chosen. A correction factor is introduced, set adaptively according to the actual power system state. In this way, the appropriate setting of the relay is provided, in relation with the actual power system state. A side-effect of the adaptive setting of the relay is that the safety margin in the relay settings is decreased, due to the uncertainty in the power system state. By adapting the relay to the actual power system state, maximum selectivity is achieved, and the protection system as such will be more reliable

Published in:

Power Delivery, IEEE Transactions on  (Volume:9 ,  Issue: 3 )