Cart (Loading....) | Create Account
Close category search window
 

Volume rendering of 3D medical ultrasound data using direct feature mapping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Steen, E. ; Div. of Comput. Syst. & Telematics, Norwegian Inst. of Technol., Trondheim, Norway ; Olstad, B.

The authors explore the application of volume rendering in medical ultrasonic imaging. Several volume rendering methods have been developed for X-ray computed tomography (X-CT), magnetic resonance imaging (MRI) and positron emission tomography (PET). Limited research has been done on applications of volume rendering techniques in medical ultrasound imaging because of a general lack of adequate equipment for 3D acquisitions. Severe noise sources and other limitations in the imaging system make volume rendering of ultrasonic data a challenge compared to rendering of MRI and X-CT data. Rendering algorithms that rely on an initial classification of the data into different tissue categories have been developed for high quality X-CT and MR-data. So far, there is a lack of general and reliable methods for tissue classification in ultrasonic imaging. The authors focus on volume rendering methods which are not dependent on any classification into different tissue categories. Instead, features are extracted from the original 3D data-set, and projected onto the view plane. The authors found that some of these methods may give clinically useful information which is very difficult to get from ordinary 2D ultrasonic images, and in some cases renderings with very fine structural details. The authors have applied the methods to 3D ultrasound images from fetal examinations. The methods are now in use as clinical tools at the National Center of Fetal Medicine in Trondheim, Norway

Published in:

Medical Imaging, IEEE Transactions on  (Volume:13 ,  Issue: 3 )

Date of Publication:

Sep 1994

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.