By Topic

A least biased fuzzy clustering method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Beni, G. ; Coll. of Eng., California Univ., Riverside, CA, USA ; Xiaomin Liu

A new operational definition of cluster is proposed, and a fuzzy clustering algorithm with minimal biases is formulated by making use of the maximum entropy principle to maximize the entropy of the centroids with respect to the data points (clustering entropy). The authors make no assumptions on the number of clusters or their initial positions. For each value of an adimensional scale parameter β', the clustering algorithm makes each data point iterate towards one of the cluster's centroids, so that both hard and fuzzy partitions are obtained. Since the clustering algorithm can make a multiscale analysis of the given data set one can obtain both hierarchy and partitioning type clustering. The relative stability with respect to β' of each cluster structure is defined as the measurement of cluster validity. The authors determine the specific value of β' which corresponds to the optimal positions of cluster centroids by minimizing the entropy of the data points with respect to the centroids (clustered entropy). Examples are given to show how this least biased method succeeds in getting perceptually correct clustering results

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:16 ,  Issue: 9 )