By Topic

Learning shape classes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kyugon Cho ; Dept. of Electr. & Comput. Eng., Rutgers Univ., Piscataway, NJ, USA ; S. M. Dunn

This paper is a summary of a new approach to learning shape concepts. In this system, a shape is represented by conjunctions of local shape properties. Conjunctions of local properties are consistent and unique for distinct shapes and are robust enough to represent shape in the presence of occlusion. A new learning method, called property based learning, is developed and used to learn conjunctions of local properties. Unlike other classification methods based on distances or similarities, classification performance does not degrade linearly as the number of classes increases and classification can be done correctly with only partial information of instances. Property based learning is an incremental learning method that selects properties crucial for classification. Two experiments are reported. In the first experiment with tool shapes, this shape learning system is used to classify shapes in the presence of view point changes, local movements such as moving handles of pliers, and occlusion. In the second experiment with hand gestures, the system can classify different gestures regardless of the movement in joints, fingers, and palms

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:16 ,  Issue: 9 )