By Topic

Learning and optimization of machining operations using computing abilities of neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rangwala, S.S. ; Dept. of Mech. Eng., California Univ., Berkeley, CA, USA ; Dornfeld, D.A.

The authors present a scheme that uses a feedforward neural network for the learning and synthesis task. Neural networks consist of a collection of interconnected processors that compute in parallel. The parallelism allows the network to examine various constraints simultaneously during the learning phase and enables reductions in computing time that are attractive in real-time applications. The learning abilities of these networks in a tuning operation are discussed. The network learns by observing the effect of the input variables of the operation (such as feed rate, depth of cut, and cutting speed) on the output variables (such as cutting force, power, temperature, and surface finish of the workpiece). The learning phase is followed by a synthesis phase during which the network predicts the input conditions to be used by the machine tool to maximize the metal removal rate subject to appropriate operating constraints

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:19 ,  Issue: 2 )