By Topic

Self-calibration/compensation technique for microcontroller-based sensor arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kolen, P.T. ; Dept. of Electr. & Comput. Eng., San Diego State Univ., CA, USA

Described is a generalized technique for real-time gain and thermal compensation of embedded microcontroller-based sensor arrays. By incorporating a single or multiple low-cost, uncalibrated thermal sensor(s) into a software feedback loop, a self-normalized calibration/compensation table for each sensor can be generated and stored in EEPROM for later use in real-time signal acquisition. The compensation is accomplished by executing a one-time initialization software routine as the sensor array is cycled through the expected temperature range. To achieve compensation to within the system resolution, the required correction loop bit width will be different from that of the system bit width. In addition to temperature compensation, the technique also includes correction for gain and voltage offset errors introduced by the analog signal conditioning as well as A/D conversion errors. An example of the technique is presented using a 68HC711E9 microcontroller for real-time acquisition and compensation of a four-element strain gage array

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:43 ,  Issue: 4 )