By Topic

Low forward drop JBS rectifiers fabricated using submicron technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mehrotra, M. ; Power Semicond. Res. Center, North Carolina State Univ., Raleigh, NC, USA ; Baliga, B.J.

This paper demonstrates the impact of using submicron technology (0.5 μm design rules) on JBS Rectifiers to achieve very low forward voltage drops while maintaining good high temperature reverse blocking characteristics. Two dimensional numerical simulations show that decreasing P+-junction width and depth improves the on-state voltage drop by improved utilization of the active area for the Schottky region and improved spreading of majority carrier current from the Schottky contact. Experimental results that demonstrate the capability to reduce the forward drop from 0.5 V to 0.25 V, while operating at up to 125°C-175°C with good reverse blocking capability, are presented. The tradeoff curves between forward drop and reverse leakage current show 45× reduction in leakage current for the same forward drop as compared to previous reports on JBS rectifiers. Power dissipation analysis indicates higher operating temperatures, (100°C for Ti-JBS and 175°C for Cr-JBS rectifiers) with reduced heat sink sizes for the JBS Rectifiers when compared to the conventional Schottky Barrier Diode (SBD)

Published in:

Electron Devices, IEEE Transactions on  (Volume:41 ,  Issue: 9 )