By Topic

InGaAs resonant tunneling transistors using a coupled-quantum-well base with strained AlAs tunnel barriers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Koch, S. ; NTT LSI Labs., Kanagawa, Japan ; Waho, T. ; Mizutani, Takashi

A bipolar-type resonant tunneling transistor is studied of which the base is identical to a coupled quantum well. On the basis of the InGaAs material system strained AlAs tunnel barriers and a graded InGaAlAs emitter are used. Molecular beam epitaxy growth conditions are studied, showing a specific influence of growth temperature and arsenic pressure. We find clear evidence for resonant tunneling: a saturation of the collector current and a maximum of the transconductance with increasing base-emitter bias in a three-terminal transistor structure. A corresponding effect in a phototransistor structure is found as a maximum of differential current gain with increasing incident light intensity. Room temperature and low temperature (80 K) high-frequency properties are determined and are used to estimate the resonant tunneling time

Published in:

Electron Devices, IEEE Transactions on  (Volume:41 ,  Issue: 9 )