By Topic

A new variational method of incorporating loss in the analysis of coupled multiple-quantum well three-dimensional waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bandyopadhyay, A. ; Inst. of Radio Phys. & Electron., Calcutta Univ., India ; Basu, P.K.

We have developed a simple method of calculating the imaginary part of the propagation constant in a lossy waveguide that closely follows the effective-index method of finding the real propagation constant of a rectangular dielectric guide. The method gives values much in agreement with the exact values obtained by the circular-harmonics method. The method has been used in the improved coupled-mode analysis of coupled-multiple-quantum-well waveguides developed by Tsang and Chuang. Three different configurations of coupled waveguides have been considered: slab, buried-channel, and strip-loaded waveguide directional couplers, where excitonic electrorefraction in multiquantum wells has been utilized to accomplish the switching. The output power-electric field curves calculated by using the above method agree closely in all three cases with similar curves obtained by using a complex propagation constant calculated by a numerical two-dimensional root-searching technique. The present method simplifies the design and optimization of coupled-waveguide devices and its application is illustrated in the case of multiple-quantum-well directional couplers

Published in:

Quantum Electronics, IEEE Journal of  (Volume:30 ,  Issue: 9 )