By Topic

Linear and logarithmic capacities in associative neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. S. Venkatesh ; Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA ; D. Psaltis

A model of associate memory incorporating global linearity and pointwise nonlinearities in a state space of n-dimensional binary vectors is considered. Attention is focused on the ability to store a prescribed set of state vectors as attractors within the model. Within the framework of such associative nets, a specific strategy for information storage that utilizes the spectrum of a linear operator is considered in some detail. Comparisons are made between this spectral strategy and a prior scheme that utilizes the sum of Kronecker outer products of the prescribed set of state vectors, which are to function nominally as memories. The storage capacity of the spectral strategy is linear in n (the dimension of the state space under consideration), whereas an asymptotic result of n/4 log n holds for the storage capacity of the outer product scheme. Computer-simulated results show that the spectral strategy stores information more efficiently. The preprocessing costs incurred in the two algorithms are estimated, and recursive strategies are developed for their computation

Published in:

IEEE Transactions on Information Theory  (Volume:35 ,  Issue: 3 )