Cart (Loading....) | Create Account
Close category search window
 

Thermal stabilization of low level RF distribution systems at SLAC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
McCormick, D. ; Linear Accel. Center, Stanford Univ., CA, USA ; Ross, M. ; Himel, T. ; Spencer, N.

Analysis of SLC accelerator operator activity, in particular control system knob turns, indicated poor thermal stability performance of the low level RF distribution system in the SLC injector and positron production complex. Daily drifts of up to 15° S-band delay, about 30 times the tolerance, were observed. In this paper we describe the tool used to track down and quantify operator knob turn activity, the low level RF distribution stabilization systems, and some fixes used to correct the problem. In order to identify poorly performing components, a beam timing or phase monitor diagnostic has been developed. Initial results from it are be presented

Published in:

Particle Accelerator Conference, 1993., Proceedings of the 1993

Date of Conference:

17-20 May 1993

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.