By Topic

Resolution of deadlocks in object-oriented distributed systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Roesler, M. ; AT&T Bell Lab., Holmdel, NJ, USA ; Burkhard, W.A.

The authors propose and prove a distributed algorithm for detection and resolution of resource deadlocks in object-oriented distributed systems. In particular, the algorithm can be used in conjunction with concurrency control algorithms which are based on the semantic lock model. The algorithm greatly reduces message traffic by properly identifying and eliminating redundant messages. It is shown that both its worst and average time complexities are O(n×e), where n is the number of nodes and e is the number of edges in the waits-for graph. After deadlock resolution, the algorithm leaves information in the system concerning dependence relations of currently running transactions. This information will preclude the wasteful retransmission of messages and reduce the delay in detecting future deadlocks

Published in:

Computers, IEEE Transactions on  (Volume:38 ,  Issue: 8 )