Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Fault-tolerant clock synchronization in large multicomputer systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Olson, A. ; Real-Time Comput. Lab., Michigan Univ., Ann Arbor, MI, USA ; Shin, K.G.

The cost of synchronizing a multicomputer increases with system size. For large multicomputers, the time and resources spent to enable each node to estimate the clock value of every other node in the system can be prohibitive. We show how to reduce the cost of synchronization by assigning each node to one or more groups, then having each node estimate the clock values of only those nodes with which it shares a group. Since each node estimates the clock value of only a subset of the nodes, the cost of synchronization can be significantly reduced. We also provide a method for computing the maximum skew between any two nodes in the multicomputer, and a method for computing the maximum time between synchronizations. We also show how the fault tolerance of the synchronization algorithm may be determined

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:5 ,  Issue: 9 )