By Topic

Dynamic focusing in ultrasound hyperthermia treatments using implantable hydrophone arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Seip, R. ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; VanBaren, P. ; Ebbini, E.S.

A prototype 16-element needle hydrophone array has been designed, fabricated and characterized. The primary use of this array is to provide acoustic feedback during ultrasound hyperthermia treatments. This feedback can be used to compensate for patient motion and tissue inhomogeneities by controlling the phased array driving patterns. It can also be used in adaptive dynamic focusing, a procedure which enables the phased array to focus at points away from specified control points. The hydrophone array consists of a PVDF sheet, which covers a silicon substrate carrier that contains the signal electrodes of the individual acoustic sensors. A complete description of the hydrophone array and its characteristics is given in this paper. The aberration correction and motion compensation algorithms are also described, and some experimental results are shown. Finally, a Taylor series based adaptive dynamic focusing method for phased arrays based on a set of discrete hydrophone array measurements is described. This algorithm does not require any prior knowledge of the applicator geometry and all the parameters needed for correction can be measured directly at the hydrophone array sensor locations.<>

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:41 ,  Issue: 5 )