By Topic

A comparative evaluation of several algorithms for phase aberration correction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ng, G.C. ; Dept. of Biomed. Eng., Duke Univ., Durham, NC, USA ; Worrell, S.S. ; Freiburger, P.D. ; Trahey, G.E.

A common framework is presented to classify several phase correction techniques. A subset of these techniques are evaluated through simulations which utilize 2-D phase aberration profiles measured in the breast. The techniques are compared based on their ability to reduce phase errors, stability, and sensitivity to noise and missing elements in the transducer array. Significant differences are observed in these measures of performance when the size and location of the aperture area used to generate a phase reference signal are varied. Techniques that utilize a small correction reference region are more susceptible to noise and missing elements than techniques which use larger reference regions. The algorithms encounter problems in 2-D phase correction when making the transition from one row to the next, due to the low interelement correlation at the transition points. It is shown that the magnitude of the interelement correlation is the key parameter governing phase correction performance.<>

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:41 ,  Issue: 5 )