By Topic

Detection and separation of ring-shaped clusters using fuzzy clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Y. H. Man ; Dept. of Biomed. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; I. Gath

A new fuzzy clustering algorithm, designed to detect and characterize ring-shaped clusters and combinations of ring-shaped and compact spherical clusters, has been developed. This FKR algorithm includes automatic search for proper initial conditions in the two cases of concentric and excentric (intersected) combinations of clusters. Validity criteria based on total fuzzy area and fuzzy density are used to estimate the optimal number of substructures in the data set. The FKR algorithm has been tested on a variety of simulated combinations of ring-shaped and compact spherical clusters, and its performance proved to be very good, both in identifying the input shapes and in recovering the input parameters. Application of the FKR algorithm to an MRI image of the heart's left ventricle was used to investigate the possibility of using this algorithm as an aid in image processing

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:16 ,  Issue: 8 )