By Topic

Robust 3-D-3-D pose estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xinhua Zhuang ; Dept. of Electr. & Comput. Eng., Missouri Univ., Columbia, MO, USA ; Yan Huang

The correspondence focuses on the robust 3-D-3-D pose estimation, especially, multiple pose estimation. The robust 3-D-3-D multiple pose estimation problem is formulated as a series of general regressions which involve a successively size-decreasing data set, with each regression relating to one particular pose of interest. Since the first few regressions may carry a severely contaminated Gaussian error noise model, the MF-estimator (Zhuang et al., 1992) is used to solve each regression for each pose of interest. Extensive computer experiments with both real imagery and simulated data are conducted and results are promising. Three distinctive features of the MF-estimator are theoretically discussed and experimentally demonstrated: It is highly robust in the sense that it is not much affected by a possible large portion of outliers or incorrect matches as long as the minimum number of inliers necessary to give a unique solution are provided; It is made virtually independent of initial guesses; It is computationally reasonable and admits an efficient parallel implementation

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:16 ,  Issue: 8 )