By Topic

Adaptive control for a sensorless permanent-magnet synchronous motor drive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tian-Hua Liu ; Dept. of Electr. Eng., Nat. Taiwan Inst. of Technol., Taipei, Taiwan ; Chien-Ping Cheng

An adaptive velocity controller for a permanent-magnet synchronous motor without using shaft sensor is presented. Two line-to-line voltages and two stator currents are sensed to produce the flux position. The design part is concerned with the formulation of control algorithm for current-regulated pulsewidth modulated inverter and vector control strategy for speed loop. Under the vector control framework, self-tuning, model following, and model referencing adaptive control are applied to design for the speed-loop controllers. The implementational part integrates the control of current and speed loop using microprocessor-based controllers. Experimental case studies that correlate simulation and measurement results are provided. The experimental results validate the theoretical development. A new approach for designing advanced adaptive controller for a sensorless ac drive is provided

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:30 ,  Issue: 3 )