Cart (Loading....) | Create Account
Close category search window

A recursive multiple model approach to noise identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rong Li, X. ; Dept. of Electr. Eng., Hartford Univ., West Hartford, CT, USA ; Bar-Shalom, Y.

Correct knowledge of noise statistics is essential for an estimator or controller to have reliable performance. In practice, however, the noise statistics are unknown or not known perfectly and thus need to be identified. Previous work on noise identification is limited to stationary noise and noise with slowly varying statistics only. An approach is presented here that is valid for nonstationary noise with rapidly or slowly varying statistics as well as stationary noise. This approach is based on the estimation with multiple hybrid system models. As one of the most cost-effective estimation schemes for hybrid system, the interacting multiple model (IMM) algorithm is used in this approach. The IMM algorithm has two desirable properties: it is recursive and has fixed computational requirements per cycle. The proposed approach is evaluated via a number of representative examples by both Monte Carlo simulations and a nonsimulation technique of performance prediction developed by the authors recently. The application of the proposed approach to failure detection is also illustrated

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:30 ,  Issue: 3 )

Date of Publication:

Jul 1994

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.