By Topic

Using message semantics to reduce rollback in optimistic message logging recovery schemes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Leong, H.V. ; Dept. of Comput. Sci., California Univ., Santa Barbara, CA, USA ; Agrawal, D.

Recovery from failures can be achieved through asynchronous checkpointing and optimistic message logging. These schemes have low overheads during failure-free operations. Central to these protocols is the determination of a maximal consistent global state, which is recoverable. Message semantics is not exploited in most existing recovery protocols to determine the recoverable state. We propose to identify messages that are not influential in a computation through message semantics. These messages can be logically removed from the computation without changing its meaning or result. We show that considering these messages in the recoverable state computation gives rise to recoverable states that dominate the recoverable state defined under conventional model. We then develop an algorithm for identifying these messages. This technique can also be applied to ensure a more timely commitment for output in a distributed computation

Published in:

Distributed Computing Systems, 1994., Proceedings of the 14th International Conference on

Date of Conference:

21-24 Jun 1994