Cart (Loading....) | Create Account
Close category search window
 

Vector space framework for unification of one- and multidimensional filter bank theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tsuhan Chen ; Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA ; Vaidyanathan, P.P.

A number of results in filter bank theory can be viewed using vector space notations. This simplifies the proofs of many important results. In this paper, we first introduce the framework of vector space, and then use this framework to derive some known and some new filter bank results as well. For example, the relation among the Hermitian image property, orthonormality, and the perfect reconstruction (PR) property is well-known for the case of one-dimensional (1-D) analysis/synthesis filter banks. We can prove the same result in a more general vector space setting. This vector space framework has the advantage that even the most general filter banks, namely, multidimensional nonuniform filter banks with rational decimation matrices, become a special case. Many results in 1-D filter bank theory are hence extended to the multidimensional case, with some algebraic manipulations of integer matrices. Some examples are: the equivalence of biorthonormality and the PR property, the interchangeability of analysis and synthesis filters, the connection between analysis/synthesis filter banks and synthesis/analysis transmultiplexers, etc. Furthermore, we obtain the subband convolution scheme by starting from the generalized Parseval's relation in vector space. Several theoretical results of wavelet transform can also be derived using this framework. In particular, we derive the wavelet convolution theorem

Published in:

Signal Processing, IEEE Transactions on  (Volume:42 ,  Issue: 8 )

Date of Publication:

Aug 1994

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.