By Topic

Ventricular late potentials characterization in time-frequency domain by means of a wavelet transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Meste, O. ; Lab. I3S, Univ. de Nice-Sophia Antipolis, Valbonne, France ; Rix, H. ; Caminal, P. ; Thakor, N.V.

The main transforms of Cohen's class allow signal representation simultaneously in time and frequency domains. Wavelet transforms make it possible to link the temporal window width to the analyzing frequency and leads to a "modified wavelet transform" which improves resolution both in time and frequency. A simulation study illustrates the artifacts of every time-frequency representation on pure sinusoids and gives performance evaluation of the different methods when searching a sinusoid embedded in a QRS complex. Analyses of real signals from healthy and pathological subjects confirm the simulation results and complete the characterization of ventricular late potentials yet detected by signal averaging.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:41 ,  Issue: 7 )