Cart (Loading....) | Create Account
Close category search window

Pulsed field diffraction by a perfectly conducting wedge: a spectral theory of transients analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ianconescu, R. ; Dept. of Electr. Eng., Tel Aviv Univ., Israel ; Heyman, E.

The canonical problem of pulsed field diffraction by a perfectly conducting wedge is analyzed via the spectral theory of transients (STT). In this approach the field is expressed directly in the time domain as a spectral integral of pulsed plane waves. Closed-form expressions are obtained by analytic evaluation of this integral, thereby explaining explicitly in the time domain how spectral contributions add up to construct the field. For impulsive excitation the final results are identical with those obtained previously via time-harmonic spectral integral techniques. Via the STT, the authors also derive new solutions for a finite (i.e., nonimpulsive) incident pulse. Approximate uniform diffraction functions are derived to explain the field structure near the wavefront and in various transition zones. They are the time-domain counterparts of the diffraction coefficients of the geometrical theory of diffraction (GTD) and the uniform theory of diffraction (UTD). An important feature of the STT technique is that it can-be extended to solve the problem of wedge diffraction of pulsed beam fields (i.e., space-time wavepackets)

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:42 ,  Issue: 6 )

Date of Publication:

Jun 1994

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.