Cart (Loading....) | Create Account
Close category search window
 

Static and dynamic properties of injection-locked semiconductor lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Linlin Li ; Inst. fur Hochfrequenztech., Tech. Univ. Berlin, Germany

The static and dynamic properties of injection-locked semiconductor lasers considering the influence of nonlinear gain are presented systematically. Depending on locking conditions, the modulation bandwidth of a semiconductor laser may be increased or decreased by external light injection. However, the relaxation resonance frequency and the damping rate as defined for a solitary Fabry-Perot (FP) laser are always enhanced by injection locking. That is, contrary to that in a solitary FP laser, the modulation bandwidth in an injection-locked laser is not determined solely by the relaxation resonance frequency, because an injection-locked laser is a third-order system. Therefore, a new definition of the modulation bandwidth is presented for such a laser. The performances of injection-locked distributed feedback (DFB) lasers are also discussed. The theory is in good agreement with the experiments

Published in:

Quantum Electronics, IEEE Journal of  (Volume:30 ,  Issue: 8 )

Date of Publication:

Aug 1994

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.