By Topic

Achieving broad-area laser diodes with high output power and single-lobed far-field patterns in the lateral direction by loading a modal reflector

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shigihara, Kimio ; Optoelectron. & Microwave Devices R&D Lab., Mitsubishi Electr. Corp., Hyogo, Japan ; Nagai, Yutaka ; Kakimoto, S. ; Ikeda, K.

A modal reflector, which consists of a high-reflectivity region surrounded by low-reflectivity regions, is added to the front facet of two types of broad-area laser diodes (LD's) to control the lateral modes. One type of LD is the self-aligned laser with a bent active layer (SBA LD) that has a real index-guiding mechanism. The other is a planar-stripe LD that consists of a Zn-diffused region to confine the current flow and has a gain-guiding mechanism. For the SBA LD's with a modal reflector, stable single-lobed far-field patterns (FFP's) are obtained at up to 0.3 and 0.4 W output powers in continuous wave (CW) operation and pulsed operation, respectively. In addition, for planar-stripe LD's with a modal reflector, stable single-lobed FFP's are obtained at up to 0.4 W in CW operation. The lateral modes inside the cavity are analyzed by utilizing a slit model and FFP's are calculated. Good agreement is found between experimental and calculated FFP's for a large Fresnel number

Published in:

Quantum Electronics, IEEE Journal of  (Volume:30 ,  Issue: 8 )