By Topic

110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-μm wavelength

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kato, K. ; NTT Opto-Electron. Labs., Kanagawa, Japan ; Kozen, A. ; Muramoto, Y. ; Itaya, Y.
more authors

A mushroom-mesa structure is proposed to reduce the CR-time constant which originates from the waveguide photodiode structure. Experimental results at a 1.55-μm wavelength show that the multimode waveguide p-i-n photodiode with mushroom-mesa structure has an electrical 3-dB bandwidth of more than 75 GHz in the frequency domain and an electrical 3-dB bandwidth of 110 GHz in the time domain. The external quantum efficiency is 50% or 0.63 A/W, which leads to a record bandwidth-efficiency product of 55 GHz for long wavelength p-i-n photodetectors.

Published in:

Photonics Technology Letters, IEEE  (Volume:6 ,  Issue: 6 )