Cart (Loading....) | Create Account
Close category search window

A generic DSP-based real-time simulator with application to hydrogenerator speed controller development

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Throckmorton, P.J. ; Dept. of Gen. Eng., Illinois Univ., Urbana, IL, USA ; Wozniak, L.

This paper presents the features and evaluation of a digital signal processor/personal computer-based simulator which allows the simultaneous simulation of two linear systems in real time. A desire to gain the ability to evaluate hydrogenerator governors (speed controllers) in forms completely equivalent to that which could be used to control actual hydrogenerators is the primary motivation for this work. The simulator is designed so that one linear system may be conceptualized as an error controller while the second system may be thought of as a plant under control. The simulator is specialized in that it allows direct entry of the hydrogenerator system parameter values of one of two linearized hydrogenerating system plant models. An option to enter the gains of a generic PID controller also exists. This PID controller may be utilized to simulate a governor for a hydrogenerator, thus allowing the real-time simulation of a closed-loop speed-controlled hydrogenerating system. Simulation accuracy is established by comparing computed results to those computed by an accepted “standard” software package. An IBM-compatible personal computer and a modified Texas Instruments TMS320C30 digital signal processor evaluation module are the primary hardware used

Published in:

Energy Conversion, IEEE Transactions on  (Volume:9 ,  Issue: 2 )

Date of Publication:

Jun 1994

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.