By Topic

Neuro-controllers for adaptive helicopter hover training

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
K. KrishnaKumar ; Dept. of Areosp. Eng., Alabama Univ., Tuscaloosa, AL, USA ; S. Sawhney ; R. Wai

This paper presents an application of artificial neural networks in adaptive helicopter hover training of novice student pilots. The design of the adaptive trainer utilizes the hypothesis that novices can be trained to fly a helicopter system automatically (with no human interaction) if the helicopter system adapts to the learning curve of the student. Two different techniques based on the above approach are presented. In the first technique, the helicopter system actively enforces optimality by augmenting the novice's control inputs by amounts necessary to satisfy desired performance criteria. The second technique uses relaxed performance criteria that are not initially optimal, but approach optimality in a graded fashion, based on the learning curve of the student. Adaptive neuro-controllers, together with a critic model, are used to implement the adaptive helicopter system. The results using simulated student models verify the approach adopted, and show that the adaptive neuro-controllers allow the helicopter system to adapt to the novice's learning curve

Published in:

IEEE Transactions on Systems, Man, and Cybernetics  (Volume:24 ,  Issue: 8 )