By Topic

Process integration and device performance of a submicrometer BiCMOS with 16-GHz ft double poly-bipolar devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yamaguchi, T. ; Tektronix Lab., Beaverton, OR, USA ; Yuzuriha, T.H.

Submicrometer-channel CMOS devices have been integrated with self-aligned double-polysilicon bipolar devices showing a cutoff frequency of 16 GHz. n-p-n bipolar transistors and p-channel MOSFETs were built in an n-type epitaxial layer on an n+ buried layer, and n-channel MOSFETs were built in a p-well on a p+ buried layer. Deep trenches with depths of 4 μm and widths of 1 μm isolated the n-p-n bipolar transistors and the n- and p-channel MOSFETs from each other. CMOS, BiCMOS, and bipolar ECL circuits were characterized and compared with each other in terms of circuit speed as a function of loading capacitance, power dissipation, and power supply voltage. The BiCMOS circuit showed a significant speed degradation and became slower than the CMOS circuit when the power supply voltage was reduced below 3.3 V. The bipolar ECL circuit maintained the highest speed, with a propagation delay time of 65 ps for CL=0 pF and 300 ps for CL=1.0 pF with a power dissipation of 8 mW per gate. The circuit speed improvements in the CMOS circuits as the effective channel lengths of the MOS devices were scaled from 0.8 to 0.4 μm were maintained at almost the same ratio

Published in:

Electron Devices, IEEE Transactions on  (Volume:36 ,  Issue: 5 )