By Topic

Determination of lines of constant phase in the near-field of a metallic cube and an airplane

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kemptner, E. ; Inst. fur Hochfrequenztech., Deutsche Forschungsansalt fur Luft- und Rahmfahrt e.V., Oberpfaffenhofen, Germany

A method is presented which enables one to calculate the scattered field very close to the surface of a perfectly conducting body as well as at the surface itself. The method is based on the representation of the scattered field by an integral over the surface current distribution. The integrand is treated by identity transformations that the singular terms can be integrated analytically, while the remaining nonsingular terms are integrated numerically. The surface current distribution is determined by the magnetic field integral equation. The theory is validated by experiments with the scattered field of a metallic cube with an edge length of a wavelength. The current distribution and the normal as well as the tangential electric field at the surface of the cube are measured by small probes, and the results are compared to those of the theory. The theoretical results of the current distributions are presented as gray value graphics-those of the near-field distribution of a cube and an airplane with the help of lines of constant phase

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:42 ,  Issue: 7 )