By Topic

A different mirror

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gourley, P.L. ; Semicond. Phys. Dept., Sandia Nat. Labs., Albuquerque, NM, USA ; Lear, Kevin L. ; Schneider, R.P.

Mirrors grown in the crystalline structure ease manufacture of vertical-cavity lasers, which emit collimated circular beams and can form large two-dimensional arrays. The authors discuss the fabrication of the surface emitting laser mirrors. By means of techniques such as molecular beam epitaxy and metal-organic vapor phase epitaxy, hundreds of layers of semiconductor materials can be grown one on top of the other. By mixing and matching the materials to create "designer" alloys, it is possible to grow a crystalline structure with all the electrical and optical properties desired for its various parts. This method of tailoring semiconductor structures is called bandgap engineering. The principles of the mirrors and their applications are discussed.<>

Published in:

Spectrum, IEEE  (Volume:31 ,  Issue: 8 )