By Topic

Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zhang, L.M. ; Dept. of Eng., Cambridge Univ., UK ; Yu, S.F. ; Nowell, M.C. ; Marcenac, D.D.
more authors

In this paper, we have developed a relatively simple algorithm to calculate the large-signal dynamic response of DFB lasers by solving the time-dependent coupled wave equations directly in the time domain. The spontaneous emission noise, longitudinal variations of carrier (hole burning) and photon densities as well as that of the refractive index are taken into consideration. To demonstrate the power of this straightforward algorithm, the model shows how the side-mode suppression ratio in devices with high κL and a λ/4: phase shift is significantly affected by the radiation in the second-order DFB laser. The time-dependent radiation pattern in grating-coupled surface-emitting lasers is also calculated for the first time

Published in:

Quantum Electronics, IEEE Journal of  (Volume:30 ,  Issue: 6 )