By Topic

Optimal filtering of digital binary images corrupted by union/intersection noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sidiropoulos, N.D. ; Inst. for Syst. Res., Maryland Univ., College Park, MD, USA ; Baras, J.S. ; Berenstein, Carlos A.

We model digital binary image data as realizations of a uniformly bounded discrete random set (or discrete random set, for short), which is a mathematical object that can be directly defined on a finite lattice. We consider the problem of estimating realizations of discrete random sets distorted by a degradation process that can be described by a union/intersection noise model. Two distinct optimal filtering approaches are pursued. The first involves a class of “mask” filters, which arises quite naturally from the set-theoretic analysis of optimal filters. The second approach involves a class of morphological filters. We prove that under i.i.d noise morphological openings, closings, unions of openings, and intersections of closings can be viewed as MAP estimators of morphologically smooth signals. Then, we show that by using an appropriate (under a given degradation model) expansion of the optimal filter, we can obtain universal characterizations of optimality that do not rely on strong assumptions regarding the spatial interaction of geometrical primitives of the signal and the noise. The results generalize to gray-level images in a fairly straightforward manner

Published in:

Image Processing, IEEE Transactions on  (Volume:3 ,  Issue: 4 )