By Topic

Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Elanayar V.T., S. ; Sch. of Mech. Eng., Purdue Univ., West Lafayette, IN, USA ; Shin, Y.C.

This paper presents a means to approximate the dynamic and static equations of stochastic nonlinear systems and to estimate state variables based on radial basis function neural network (RBFNN). After a nonparametric approximate model of the system is constructed from a priori experiments or simulations, a suboptimal filter is designed based on the upper bound error in approximating the original unknown plant with nonlinear state and output equations. The procedures for both training and state estimation are described along with discussions on approximation error. Nonlinear systems with linear output equations are considered as a special case of the general formulation. Finally, applications of the proposed RBFNN to the state estimation of highly nonlinear systems are presented to demonstrate the performance and effectiveness of the method

Published in:

Neural Networks, IEEE Transactions on  (Volume:5 ,  Issue: 4 )