By Topic

Hierarchical discretized pursuit nonlinear learning automata with rapid convergence and high accuracy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Papadimitriou, Georgios I. ; Dept. of Comput. Eng., Patras Univ., Greece

A new absorbing multiaction learning automaton that is epsilon-optimal is introduced. It is a hierarchical discretized pursuit nonlinear learning automaton that uses a new algorithm for positioning the actions on the leaves of the hierarchical tree. The proposed automaton achieves the highest performance (speed of convergence, central processing unit (CPU) time, and accuracy) among all the absorbing learning automata reported in the literature up to now. Extensive simulation results indicate the superiority of the proposed scheme. Furthermore, it is proved that the proposed automaton is epsilon-optimal in every stationary stochastic environment

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:6 ,  Issue: 4 )