By Topic

A parallel-in-time method for the transient simulation of SOI devices with drain current overshoots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tai, Gwo‐Chung ; Meta Software Corp., Cambridge, MA, USA ; Korman, C.E. ; Mayergoyz, I.D.

This paper presents a new parallel-in-time algorithm for the two dimensional transient simulation of SOI devices. With this approach, simulation in both space and time domains is performed in parallel As a result, the CPU time is reduced significantly from the conventional serial-in-time method. This new approach fully exploits the inherent parallelism of the finite difference formulation of the basic semiconductor device equations and the massively parallel architecture of SIMD computers. The space domain computations are inherently parallel due to the nature of our technique of solving the finite-difference equations. Time domain parallelism is achieved by shifting the potentials from previous time points to subsequent points one-step forward along the time axis with each Gummel iteration. This algorithm employs a fixed-point iteration technique, therefore a direct solution of matrix equations is avoided. The algorithm is especially suitable for the transient simulation of SOI devices that exhibit transient drain current overshoot. Numerical experiments show that the new parallel-in-time method is up to eight times faster than the conventional serial-in-time method in SOI transient simulations. The program is coded in CM Fortran for the Connection Machine

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:13 ,  Issue: 8 )