By Topic

Yield enhancement of programmable ASIC arrays by reconfiguration of circuit placements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Narasimham, J. ; T.J. Watson Res. Centre, IBM Res. Div., Yorktown Heights, NY, USA ; Nakajima, K. ; Rim, C.S. ; Dahbura, A.T.

In an approach recently proposed for the yield enhancement of programmable gate arrays (PGA's), an initial placement of a circuit is first obtained using a standard technique such as simulated annealing on a defect-free PGA. In the next step, this placement is reconfigured so that the circuit is mapped onto the defect-free portion of a defective PGA chip with the same architecture. We first formulate the reconfiguration aspect of this approach as a problem of shifting pebbles on a graph. We present efficient reconfiguration algorithms for this pebble shift problem. Using these algorithms as heuristics, we develop a yield enhancement system not only for PGA's, but also for programmable Wafer Scare Integrated (WSI) processor arrays. We evaluate the heuristic algorithms using the measures of routability and total wire length of the reconfigured placement of the circuit. Based on this evaluation, we establish proper reconfiguration strategies

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:13 ,  Issue: 8 )