By Topic

An error and sensitivity analysis of the atmospheric- and soil-correcting variants of the NDVI for the MODIS-EOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huete, A.R. ; Dept. of Soil & Water Sci., Arizona Univ., Tucson, AZ, USA ; Liu, H.Q.

Several soil- and atmospheric-correcting variants of the normalized difference vegetation index (NDVI) have been proposed to improve the accuracy in estimating biophysical plant parameters. In this study, a sensitivity analysis, utilizing simulated model data, was conducted on the NDVI and variants by analyzing the atmospheric- and soil-perturbed responses as a continuous function of leaf area index. Percent relative error and vegetation equivalent “noise” (VEN) were calculated for soil and atmospheric influences, separately and combined. The NDVI variants included the soil-adjusted vegetation index (SAVI), the atmospherically resistant vegetation index (ARVI), the soil-adjusted and atmospherically resistant vegetation index (SARVI), the modified SAVI (MSAVI), and modified SARVI (MSARVI). Soil and atmospheric error were of similar magnitudes, but varied with the vegetation index. All new variants outperformed the NDVI. The atmospherically resistant versions minimized atmospheric noise, but enhanced soil noise, while the soil adjusted variants minimized soil noise, but remained sensitive to the atmosphere. The SARVI, which had both a soil and atmosphere calibration term, performed the best with a relative error of 10 percent and VEN of ±0.33 LAI. By contrast, the NDM had a relative error of 20 percent and VEN of ±0.97 LAI

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:32 ,  Issue: 4 )