By Topic

Calibration of a polarimetric radar using a rotatable dihedral corner reflector

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Unal, C.M.H. ; Lab. for Telecom. and Remote Sensing Technol., Delft Univ. of Technol., Netherlands ; Niemeijer, R.J. ; van Sinttruyen, J.S. ; Ligthart, L.P.

Based on the existing mathematical formalisms of radar polarimetry, it is necessary to perform accurate and diversified polarimetric measurements in the real world to thoroughly investigate signature definition, identification, and classification of radar targets. For this study the Delft Atmospheric Research Radar (DARR) is used. This ground-based polarimetric FM-CW radar operates in the S-band. The purpose of the present paper is the polarimetric calibration of the DARR. Among the passive reflectors, a rotatable dihedral corner reflector is a suitable calibration object. It enables one to measure different scattering matrices with only one reflector. One alignment must be performed and the scattering matrices are measured at the same range. By measuring several scattering matrices, the accuracy of the calibration result can be estimated. A measurement campaign with a rotatable dihedral corner reflector was therefore performed. The experimental results and the calibration procedure are presented in this paper

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:32 ,  Issue: 4 )