By Topic

Modeling of geometric properties of loblolly pine tree and stand characteristics for use in radar backscatter studies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kasischke, E.S. ; Center for Earth Sci., Environmental Res. Inst. of Michigan, Ann Arbor, MI, USA ; Christensen, N.L. ; Haney, E.M.

An approach is presented to physically describe the tree and canopy components within loblolly pine forests in studies of microwave backscattering from forested canopies. The approach is based on a set of algorithms which describe the biomass characteristics of individual trees using measurements of tree diameter, height, and canopy depth. These algorithms predict bole, branch, and needle biomass; number, sizes, and orientations of primary and smaller branches; and number and density of needle clumps. Methods are discussed to aggregate the individual tree measurements into stand measurements (i.e., measurements per unit area). The results of the model clearly show how biomass distribution between tree components and canopy layers varies as a function of stand age for loblolly pines. The results also show the approach can be used to predict changes in the branch size and orientation within the canopy as a function of stand age, both on an individual tree basis as well as an entire stand basis

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:32 ,  Issue: 4 )