By Topic

Multisource classification of remotely sensed data: fusion of Landsat TM and SAR images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. H. S. Solberg ; Norweigan Computing Centre, Oslo, Norway ; A. K. Jain ; T. Taxt

Proposes a new method for statistical classification of multisource data. The method is suited for land-use classification based on the fusion of remotely sensed images of the same scene captured at different dates from multiple sources. It incorporates a priori information about the likelihood of changes between the acquisition of the different images to be fused. A framework for the fusion of remotely sensed data based on a Bayesian formulation is presented. First, a simple fusion model is given, and then the basic model is extended to take into account the temporal attribute if the different data sources are acquired at different dates. The performance of the model is evaluated by fusing Landsat TM images and ERS-1-SAR images for land-use classification. The fusion model gives significant improvements in the classification error rates compared to the conventional single-source classifiers

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:32 ,  Issue: 4 )