Cart (Loading....) | Create Account
Close category search window

Noise performance of linear associative memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Raghunath, K.J. ; Dept. of Electr. Eng., Minnesota Univ., Minneapolis, MN, USA ; Cherkassky, V.

The performance of two commonly used linear models of associative memories, generalized inverse (GI) and correlation matrix memory (CMM) is studied analytically in the presence of a new type of noise (training noise due to noisy training patterns). Theoretical expressions are determined for the S/N ratio gain of the GI and CMM memories in the auto-associative and hetero-associative modes of operation. It is found that the GI method performance degrades significantly in the presence of training noise while the CMM method is relatively unaffected by it. The theoretical expressions are plotted and compared with the results obtained from Monte Carlo simulations and the two are found to be in excellent agreement

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:16 ,  Issue: 7 )

Date of Publication:

Jul 1994

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.