By Topic

Object identification from multiple images based on point matching under a general transformation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yang, M.C.K. ; Dept. of Stat., Florida Univ., Gainesville, FL, USA ; Jong-Sen Lee

This work is motivated by ship identification from a sequence of ISAR images. Maximum likelihood classification, based on point matching, is formulated when the observed images are subject to missing points and phantoms. The 3-D to 2-D transformation is assumed to be known only in a certain parametric form. Proper weights, based on the noise levels for all images, are derived for the classification formula. The new formulation simplifies the computation of matching and makes its extension to object identification from multiple images feasible. Moreover, some theoretical properties of the identification procedure can now be investigated. Guidelines on which groups of objects are easier to distinguish are found from statistical theory followed by intuitive explanation. This method is then applied to ship identification with simulated ISAR images

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:16 ,  Issue: 7 )