By Topic

Multiresolution color image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jianqing Liu ; Comput. Vision Lab., Saskatchewan Univ., Saskatoon, Sask., Canada ; Yang, Y.-H.

Image segmentation is the process by which an original image is partitioned into some homogeneous regions. In this paper, a novel multiresolution color image segmentation (MCIS) algorithm which uses Markov random fields (MRF's) is proposed. The proposed approach is a relaxation process that converges to the MAP (maximum a posteriori) estimate of the segmentation. The quadtree structure is used to implement the multiresolution framework, and the simulated annealing technique is employed to control the splitting and merging of nodes so as to minimize an energy function and therefore, maximize the MAP estimate. The multiresolution scheme enables the use of different dissimilarity measures at different resolution levels. Consequently, the proposed algorithm is noise resistant. Since the global clustering information of the image is required in the proposed approach, the scale space filter (SSF) is employed as the first step. The multiresolution approach is used to refine the segmentation. Experimental results of both the synthesized and real images are very encouraging. In order to evaluate experimental results of both synthesized images and real images quantitatively, a new evaluation criterion is proposed and developed

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:16 ,  Issue: 7 )